ได้แก่รูปทรง ปริซึม ทรงกลม พีระมิด กรวย ทรงกระบอก แบบทดสอบ
ปริมาตร หมายถึง
ความมากน้อยในปริภูมิสามมิติซึ่งวัสดุชนิดหนึ่งในสถานะใดๆ (ของแข็ง ของเหลว แก๊ส หรือพลาสมา) หรือรูปทรงชนิดหนึ่งยึดถืออยู่หรือบรรจุอยู่ บ่อยครั้งที่ปริมาตรระบุปริมาณเป็นตัวเลขโดยใช้หน่วยกำกับ เช่นลูกบาศก์เมตรซึ่งเป็นหน่วยอนุพันธ์เอสไอ นอกจากนี้ยังเป็นที่เข้าใจกันโดยทั่วไปว่า ปริมาตรของภาชนะคือ ความจุ ของภาชนะ เช่นปริมาณของของไหล (ของเหลวหรือแก๊ส) ที่ภาชนะนั้นสามารถบรรจุได้ มากกว่าจะหมายถึงปริมาณเนื้อวัสดุของภาชนะ
รูปทรงสามมิติทางคณิตศาสตร์มักถูกกำหนดปริมาตรขึ้นด้วยพร้อมกัน ปริมาตรของรูปทรงอย่างง่ายบางชนิด เช่นมีด้านยาวเท่ากัน สันขอบตรง และรูปร่างกลมเป็นต้น สามารถคำนวณได้ง่ายโดยใช้สูตรต่าง ๆ ทางเรขาคณิต ส่วนปริมาตรของรูปทรงที่ซับซ้อนยิ่งขึ้นสามารถคำนวณได้ด้วยแคลคูลัสเชิงปริพันธ์ถ้าทราบสูตรสำหรับขอบเขตของรูปทรงนั้น รูปร่างหนึ่งมิติ (เช่นเส้นตรง) และรูปร่างสองมิติ (เช่นรูปสี่เหลี่ยมจัตุรัส) ถูกกำหนดให้มีปริมาตรเป็นศูนย์ในปริภูมิสามมิติ
ปริมาตรของของแข็ง (ไม่ว่าจะมีรูปทรงปกติหรือไม่ปกติ) สามารถตรวจวัดได้ด้วยการแทนที่ของไหล และการแทนที่ของเหลวสามารถใช้ตรวจวัดปริมาตรของแก๊สได้อีกด้วย ปริมาตรรวมของวัสดุสองชนิดโดยปกติจะมากกว่าปริมาตรของวัสดุอย่างใดอย่างหนึ่ง เว้นแต่เมื่อวัสดุหนึ่งละลายในอีกวัสดุหนึ่งแล้ว ปริมาตรรวมจะไม่เป็นไปตามหลักการบวก
ในเรขาคณิตเชิงอนุพันธ์ ปริมาตรถูกอธิบายด้วยความหมายของรูปแบบปริมาตร (volume form) และเป็นตัวยืนยงแบบไรมันน์ (Riemann invariant) ที่สำคัญโดยรวม ในอุณหพลศาสตร์ ปริมาตรคือตัวแปรเสริม (parameter) ชนิดพื้นฐาน และเป็นตัวแปรควบคู่ (conjugate variable) กับความดัน
พื้นที่ คือปริมาณที่แสดงถึงขอบเขตเนื้อที่ของพื้นผิวหรือรูปร่างสองมิติ หรือแผ่นบางเชิงระนาบ (planar lamina) พื้นที่สามารถเข้าใจได้ว่าเป็นจำนวนวัสดุที่หนาขนาดหนึ่งเท่าที่จำเป็นที่จะประกอบขึ้นเป็นรูปร่าง หรือปริมาณสีทาเท่าที่จำเป็นที่จะทาผิวหน้าในครั้งเดียว พื้นที่เป็นมโนทัศน์ในสองมิติที่คล้ายคลึงกับความยาวของเส้นโค้งในหนึ่งมิติ หรือปริมาตรของทรงตันในสามมิติ
พื้นที่ของรูปร่างสามารถวัดได้โดยการเปรียบเทียบกับรูปสี่เหลี่ยมจัตุรัสที่มีขนาดตายตัวขนาดหนึ่ง หน่วยมาตรฐานของพื้นที่ในหน่วยเอสไอคือ ตารางเมตร (m2) ซึ่งเป็นพื้นที่ของรูปสี่เหลี่ยมจัตุรัสที่มีด้านยาวด้านละหนึ่งเมตร รูปร่างที่มีพื้นที่เท่ากับสามตารางเมตร จะเหมือนกับพื้นที่ของรูปสี่เหลี่ยมจัตุรัสเช่นนั้นสามรูป ในทางคณิตศาสตร์ หน่วยตารางหน่วยถูกนิยามขึ้นให้มีพื้นที่เท่ากับ "หนึ่ง" และพื้นที่ของรูปร่างหรือพื้นผิวอื่น ๆ ก็จะเป็นจำนวนจริงไร้มิติจำนวนหนึ่ง
สูตรคำนวณหาพื้นที่ของรูปร่างพื้นฐานหลายสูตรเป็นที่รู้จักโดยทั่วไป เช่น รูปสามเหลี่ยม รูปสี่เหลี่ยมมุมฉาก รูปวงกลม เป็นต้น จากการใช้สูตรเหล่านี้ พื้นที่ของรูปหลายเหลี่ยมใด ๆ สามารถหาได้จากการแบ่งรูปหลายเหลี่ยมเป็นรูปสามเหลี่ยม ส่วนรูปร่างที่มีขอบเขตเป็นเส้นโค้งมักจะคำนวณพื้นที่ได้ด้วยแคลคูลัส (calculus)
